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Letter to the Editor

A Human Population Bottleneck Can Account for the Discordance Between Patterns of
Mitochondrial Versus Nuclear DNA Variation
Justin C. Fay* and Chung-I Wu*†
*Committee on Genetics and †Department of Ecology and Evolution, University of Chicago

Whether or not humans have experienced a reduc-
tion in population size in the recent past is a controver-
sial issue germane to the origin and colonization of our
own species (Stringer and Andrews 1988). A change in
population size can result in deviations from the neutral
patterns of nucleotide variation expected at equilibrium.
Using the frequency distribution of mutations segregat-
ing in extant populations, the magnitude of a deviation
can be measured by Tajima’s (1989a) D statistic or by
a number of alternative measures (Fu and Li 1993; Fu
1996). In a population of constant size, variation at a
neutrally evolving locus is expected to have a D value
of approximately zero. Following a reduction in popu-
lation size, rare frequency mutations are lost more read-
ily than are common mutations (Nei, Maruyama, and
Chakraborty 1975), and transient positive D values are
expected (Tajima 1989b). Following an increase in pop-
ulation size, there is a temporary excess of new muta-
tions segregating at rare frequencies, and negative D val-
ues are expected. The sign of Tajima’s D subsequent to
a population bottleneck can be positive, negative, or
zero depending on the length of time since the bottle-
neck and the severity of the bottleneck. If a bottleneck
is so severe that all variation is eliminated or lasts so
long that the population reaches a new equilibrium, Ta-
jima’s D follows the pattern produced by an expansion
in population size. However, following an incomplete
bottleneck, Tajima’s D is transiently positive before be-
coming negative and eventually approaching its equilib-
rium (Tajima 1989b).

In humans, mitochondrial variation is characterized
by an excess of rare frequency mutations and a negative
D value, which has been interpreted as the result of a
recent expansion in population size (Merriwether et al.
1991; Rogers and Harpending 1992). In contrast, most
nuclear loci are characterized by the opposite pattern, an
excess of common mutations and positive D values,
which can result from a recent reduction in population
size (Hey 1997; Harding et al. 1997; Clark et al. 1998;
Zietkiewicz et al. 1998). The conflicting profiles of mi-
tochondrial and nuclear variation have led to the sug-
gestion that these patterns cannot be simultaneously ac-
counted for by human population history, which must
be shared by both genomes (Hey 1997).
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Since the mitochondrial genome has an effective
population size one quarter that of an average nuclear
locus, its patterns of variation may be quite different
following a change in population size. While current
explanations must invoke complex demographic histo-
ries or selection, we have found using computer simu-
lations that the apparently incongruent patterns of mi-
tochondrial and nuclear variation are in fact quite com-
patible with a recent human population bottleneck.

Patterns and levels of nucleotide variation are com-
monly summarized by two estimators of thep̂ and û,
population parameter u, equal to four times the product
of the effective population size and the mutation rate.
In a sample of n genes, is the average number ofp̂
pairwise differences, and 5 S/an, where S is the num-û
ber of segregating sites and an is the sum of 1 1 1/2 1
1/3 1 . . . 1 1/(n 2 1) (Watterson 1975). Tajima’s D
measures the difference between divided by thep̂ and û
variance of the difference:

p̂ 2 û
D 5 , (1)
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where e1 and e2 are constants derived from the sample
size (Tajima 1989a). In a population of constant size,
the expected difference between and the cor-p̂ and û
responding D value is just below zero, assuming neutral
evolution (Tajima 1989a).

We used a coalescence algorithm (following that of
Simonsen, Churchill, and Aquadro 1995) and Tajima’s
(1989b) analytical equations to generate the expected
reduction in and the corresponding D valuesp̂ and û
for human mitochondrial and nuclear parameters follow-
ing a population bottleneck. To explore the effects of
different parameters, we used Tajima’s (1989b) equa-
tions for the expectation of following a changep̂ and û
in population size. However, these equations do not pro-
vide the covariance between , and thus resultp̂ and û
in biased estimates of the variance in D. Therefore, all
of the presented results were generated using 5,000 it-
erations of the coalescence algorithm for a given set of
bottleneck and population parameters (with sample size
n 5 50). We assume the mitochondrial genome has one
quarter the effective population size of the nuclear ge-
nome, and each experiences the same percent reduction
in population size during a bottleneck.

A population bottleneck affects the subsequent pat-
terns of DNA variation. In a simple stepwise bottleneck
(fig. 1A), a population at equilibrium of size N0 is re-
duced to N1 for T generations. The severity of the bot-
tleneck is determined by the reduction in population
size, N0/N1, and the duration of the bottleneck, T/N0
(measured in units of N0 generations) (Tajima 1989b).
Over a range of bottleneck severities, nearly the same
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FIG. 1.—Similar D values result from bottlenecks (A) of different
reductions in population size or (B) different bottleneck lengths. Each
point is the mean of 5,000 iterations of a coalescence algorithm, where
N0 5 2.5 3 104 and u 5 20, and the end of the bottleneck (dotted
line) is at generation zero (see text for details).

FIG. 2.—The mitochondrial (open circles) and nuclear (closed cir-
cles) D values during and subsequent to a population bottleneck. The
reduction in population size is N0/N1 5 20 and the duration is for 1,500
generations, as indicated by the vertical dotted line. The nuclear and
mitochondrial parameter values are, respectively, N0 5 3 3 104 and
7.5 3 103, T/N0 5 0.025 and 0.1, and u 5 30 and 150 (mtDNA is
assumed to have one quarter the population size and 20 times the
mutation rate of nuclear DNA). Horizontal dotted lines indicate the
observed mitochondrial D and the range of three nuclear D values (see
text).

D values are produced for a bottleneck that is four times
as long and one quarter the N0/N1 ratio (comparing the
corresponding curves in fig. 1A and B). Hence, the se-
verity of a bottleneck is approximately proportional to
the product of T/N0 and N0/N1, or T/N1, when comparing
bottlenecks of intermediate severity (0.25 , T/N1 , 4).

Passing through the same bottleneck, the mito-
chondrial genome experiences a greater reduction in lev-
els of variation and subsequently lower D values, but
recovers more quickly than the nuclear genome. The
difference in severity is due only to the mitochondrial
genome’s smaller population size, which determines the
effective duration, T/N0, of the bottleneck (note that the
ratio N0/N1 is the same for both genomes). The mutation
rate, which is 10–30 times higher in mitochondrial DNA
(Horai et al. 1995; Takahata and Satta 1997), does not
contribute to the difference between patterns of mito-
chondrial and nuclear variation, since, like the sequence
length or sample size, it only influences our ability to
estimate the difference between . Using reason-p̂ and û
able parameters for a human population bottleneck, sim-
ulated D values (fig. 2) are similar to the observed mi-
tochondrial D value, 22.13 (Merriwether et al. 1991),
and the range of D values obtained from three nuclear
genes: b-globin, 1.06 (Harding et al. 1997); lipoprotein
lipase, 0.91 (Clark et al. 1998); and dystrophin, 0.96,
which is on the X chromosome (Zietkiewicz et al. 1998).

Although the observed and simulated D values are not
statistically comparable due to sampling differences, the
standard deviations of D calculated from the simulation
were 0.87 at generation zero (equilibrium) and 1.39 and
1.05 at generation 3,000 for the nuclear and mitochon-
drial loci, respectively.

The difference between patterns of mitochondrial
and nuclear variation following a bottleneck depends, of
course, on the severity of the bottleneck. Following a
severe bottleneck, both mitochondrial and nuclear D val-
ues tend to be more negative, and following a mild bot-
tleneck, both tend to be closer to zero. Since numerous
combinations of N0, N1, and T exist for any given se-
verity, a recent population bottleneck provides a simple
explanation for simultaneous negative mitochondrial
and positive nuclear D values.

In conclusion, the opposite skews in the frequency
distribution of mitochondrial and nuclear variation
found in extant human populations are not necessarily
incompatible with a common history shared by the two
genomes, contrary to previous claims (e.g., Hey 1997).
An incomplete bottleneck can produce D values which
range from positive to negative, depending on values of
N0, N1, and T that are not unrealistic by our current
understanding of human history. In contrast, a popula-
tion expansion is expected to produce negative D values
for both mitochondrial and nuclear loci. Selection could
certainly increase or decrease any D value, but a specific
model of selection would be needed to explain not only
the contrast between the mitochondrial and nuclear ge-
nomes, but also the generally positive D values of the
several nuclear genes extensively studied so far (Har-
ding et al. 1997; Clark et al. 1998; Zietkiewicz et al.
1998).

Genome-wide studies are particularly useful for in-
ferring a population’s history since any observed pattern
cannot be explained by locus-specific effects. In a study
of 60 microsatellite loci, patterns of variation were also
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found to be compatible with a recent human population
bottleneck (Kimmel, Chakraborty, and King 1998). In
addition, the strongest signature of a population bottle-
neck was found in Asian populations, followed by Cau-
casian and African populations. Interestingly, a compar-
ison of mitochondrial and nuclear D values across pop-
ulations shows a similar pattern: non-African popula-
tions have lower mitochondrial D values and higher
nuclear D values when compared to African populations
(Merriwether et al. 1991; Harding et al. 1997; Clark et
al. 1998; Zietkiewicz et al. 1998), and this pattern is
most striking in the comparison of African and Asian
populations. While in reality the history of human pop-
ulations must be much more complex, with geographical
differentiation, migration, and demographics specific to
certain populations (Templeton 1997), a population bot-
tleneck is at least a parsimonious explanation for the
seemingly incongruent observations of mitochondrial
and nuclear variation.
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